skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Saydjari, Andrew K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Understanding the ages of stars is crucial for unraveling the formation history and evolution of our Galaxy. Traditional methods for estimating stellar ages from spectroscopic data often struggle with providing appropriate uncertainty estimations and are severely constrained by the parameter space. In this work, we introduce a new approach using normalizing flows—a type of deep generative model—to estimate stellar ages for evolved stars with improved accuracy and robust uncertainty characterization. The model is trained on stellar masses for evolved stars derived from asteroseismology and predicts the relationship between the carbon and nitrogen abundances of a given star and its age. Unlike standard neural network techniques, normalizing flows enable the recovery of full likelihood distributions for individual stellar ages, offering a richer and more informative perspective on uncertainties. Our method yields age estimations for 378,720 evolved stars and achieves a typical absolute age uncertainty of approximately 2 Gyr. By intrinsically accounting for the coverage and density of the training data, our model ensures that the resulting uncertainties reflect both the inherent noise in the data and the completeness of the sampled parameter space. Applying this method to data from the fifth-generation Sloan Digital Sky Survey Milky Way Mapper, we have produced the largest stellar age catalog for evolved stars to date. 
    more » « less
  2. High-resolution 3D maps of interstellar dust are critical for probing the underlying physics shaping the structure of the interstellar medium, and for foreground correction of astrophysical observations affected by dust. We aim to construct a new 3D map of the spatial distribution of interstellar dust extinction out to a distance of kpc from the Sun. We leveraged distance and extinction estimates to 54 million nearby stars derived from the Gaia BP/RP spectra. Using the stellar distance and extinction information, we inferred the spatial distribution of dust extinction. We modeled the logarithmic dust extinction with a Gaussian process in a spherical coordinate system via iterative charted refinement and a correlation kernel inferred in previous work. In total, our posterior has over 661 million degrees of freedom. We probed the posterior distribution using the variational inference method MGVI. Our 3D dust map has an angular resolution of up to $ $ ($$N_ side =256$$), and we achieve parsec-scale distance resolution, sampling the dust in $516$ logarithmically spaced distance bins spanning pc . We generated 12 samples from the variational posterior of the 3D dust distribution and release the samples alongside the mean 3D dust map and its corresponding uncertainty. Our map resolves the internal structure of hundreds of molecular clouds in the solar neighborhood and will be broadly useful for studies of star formation, Galactic structure, and young stellar populations. It is available for download in a variety of coordinate systems online and can also be queried via the publicly available dustmaps Python package. 
    more » « less
  3. Abstract Diffuse interstellar bands (DIBs) are broad absorption features associated with interstellar dust and can serve as chemical and kinematic tracers. Conventional measurements of DIBs in stellar spectra are complicated by residuals between observations and best-fit stellar models. To overcome this, we simultaneously model the spectrum as a combination of stellar, dust, and residual components, with full posteriors on the joint distribution of the components. This decomposition is obtained by modeling each component as a draw from a high-dimensional Gaussian distribution in the data space (the observed spectrum)—a method we call “Marginalized Analytic Data-space Gaussian Inference for Component Separation” (MADGICS). We use a data-driven prior for the stellar component, which avoids missing stellar features not well modeled by synthetic spectra. This technique provides statistically rigorous uncertainties and detection thresholds, which are required to work in the low signal-to-noise regime that is commonplace for dusty lines of sight. We reprocess all public Gaia DR3 RVS spectra and present an improved 8621 Å DIB catalog, free of detectable stellar line contamination. We constrain the rest-frame wavelength to 8623.14 ± 0.087 Å (vacuum), find no significant evidence for DIBs in the Local Bubble from the 1/6th of RVS spectra that are public, and show unprecedented correlation with kinematic substructure in Galactic CO maps. We validate the catalog, its reported uncertainties, and biases using synthetic injection tests. We believe MADGICS provides a viable path forward for large-scale spectral line measurements in the presence of complex spectral contamination. 
    more » « less
  4. Abstract Photometric pipelines struggle to estimate both the flux and flux uncertainty for stars in the presence of structured backgrounds such as filaments or clouds. However, it is exactly stars in these complex regions that are critical to understanding star formation and the structure of the interstellar medium. We develop a method, similar to Gaussian process regression, which we term local pixel-wise infilling (LPI). Using a local covariance estimate, we predict the background behind each star and the uncertainty of that prediction in order to improve estimates of flux and flux uncertainty. We show the validity of our model on synthetic data and real dust fields. We further demonstrate that the method is stable even in the crowded field limit. While we focus on optical-IR photometry, this method is not restricted to those wavelengths. We apply this technique to the 34 billion detections in the second data release of the Dark Energy Camera Plane Survey. In addition to removing many >3 σ outliers and improving uncertainty estimates by a factor of ∼2–3 on nebulous fields, we also show that our method is well behaved on uncrowded fields. The entirely post-processing nature of our implementation of LPI photometry allows it to easily improve the flux and flux uncertainty estimates of past as well as future surveys. 
    more » « less
  5. Abstract We presentAugustus, a catalog of distance, extinction, and stellar parameter estimates for 170 million stars from 14 mag <r< 20 mag and with ∣b∣ > 10° drawing on a combination of optical to near-infrared photometry from Pan-STARRS, 2MASS, UKIDSS, and unWISE along with parallax measurements from Gaia DR2 and 3D dust extinction maps. After applying quality cuts, we find 125 million objects have “high-quality” posteriors with statistical distance uncertainties of ≲10% for objects with well-constrained stellar types. This is a substantial improvement over the distance estimates derived from Gaia parallaxes alone and in line with the recent results from Anders et al. We find the fits are able to reproduce the dereddened Gaia color–magnitude diagram accurately, which serves as a useful consistency check of our results. We show that we are able to detect large, kinematically coherent substructures in our data clearly relative to the input priors, including the Monoceros Ring and the Sagittarius Stream, attesting to the quality of the catalog. Our results are publicly available at doi:10.7910/DVN/WYMSXV. An accompanying interactive visualization can be found athttp://allsky.s3-website.us-east-2.amazonaws.com. 
    more » « less
  6. Abstract Deep optical and near-infrared imaging of the entire Galactic plane is essential for understanding our Galaxy’s stars, gas, and dust. The second data release of the Dark Energy Camera (DECam) Plane Survey extends the five-band optical and near-infrared survey of the southern Galactic plane to cover 6.5% of the sky, ∣ b ∣ ≤ 10°, and 6° > ℓ > −124°, complementary to coverage by Pan-STARRS1. Typical single-exposure effective depths, including crowding effects and other complications, are 23.5, 22.6, 22.1, 21.6, and 20.8 mag in g , r , i , z , and Y bands, respectively, with around 1″ seeing. The survey comprises 3.32 billion objects built from 34 billion detections in 21,400 exposures, totaling 260 hr open shutter time on the DECam at Cerro Tololo. The data reduction pipeline features several improvements, including the addition of synthetic source injection tests to validate photometric solutions across the entire survey footprint. A convenient functional form for the detection bias in the faint limit was derived and leveraged to characterize the photometric pipeline performance. A new postprocessing technique was applied to every detection to debias and improve uncertainty estimates of the flux in the presence of structured backgrounds, specifically targeting nebulosity. The images and source catalogs are publicly available at http://decaps.skymaps.info/ . 
    more » « less
  7. Evans, Christopher J.; Bryant, Julia J.; Motohara, Kentaro (Ed.)